Background

Rewarding Miners

Interoperability

Robustness 00000 Conclusions

Game Theoretical Analysis of Blockchain Users' Behaviors

presented by : Marianna Belotti defended on : Decembre 16^{th} , 2021

HESAM UNIVERSITÉ

THESIS directed by : Stefano Secci, Professor, Cnam

le c**nam**

Maria Potop-Butucaru, Professor, Sorbonne University

and co-advised by : Stefano Moretti, Senior Researcher, CNRS, Paris Dauphine University PSL

JURY

Maurice Herlihy Emmanuelle Anceaume Nicolas Maudet Julien Prat Silvia Bonomi Henning Ahnert Nadia Filali Professor, Brown University, USA Senior Researcher, IRISA, France Professor, Sorbonne University, France Professor, ENSAE, France Professor, La Sapienza University, Italy European Central Bank, Germany Caisse des Dépôts, France Reviewer Reviewer Examiner Examiner Invited Invited

Marianna Belotti

Background	Rewarding Miners	Interoperability	Robustness	Conclusions

2 Background

- **3** Rewarding Miners
- 4 Interoperability

5 Robustness

▲ロ > ▲ 圖 > ▲ 画 > ▲ 画 > ▲ 画 > ▲ ◎ >

Marianna Belotti

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000					

2 Background

- **3** Rewarding Miners
- Interoperability

5 Robustness

・ロト ・四 ・ ・ 回 ・ ・ 回 ・ ・ 日 ・ つ へ つ

Marianna Belotti

Marianna Belotti

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	000000	0000000000	00000000	00000	00000

Introduction on DLTs

Fundamental bricks of a DLT:

- Data Structure (e.g., Bitcoin UTXO)
- **Communication Language** to update the ledger state (*e.g., transactions and smart-contract*)
- Agreement Protocol (e.g., Bitcoin proof-of-work)

Blockchain Actors and Transaction Journey

Transacting parties: a blockchain transaction involves two different types of actors related to single or multiple blockchain users: the *data-sender* and the *data-receiver*.

Validating nodes: run the consensus algorithm and are responsible for establishing the agreement on the proposals made by other validators or by leading nodes.

1 Transaction Creation

- Signing transactions
- **2** Transaction Propagation
 - Collect transactions in blocks
- **4** Transaction Validation
- **5** Transaction Confirmation

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
0000●	000000	000000000	00000000	00000	00000
Overview					

Goal: We analyze the two main types of blockchain users (i.e., transacting parties and validating nodes) as well as different blockchains (i.e., permissionless and permissioned) with the scope of providing a general overview of the topic and formal results on **blockchain users' behaviors**.

Behavior Model

イロト イポト イヨト イヨト

		Rational	Byzantine
Blockchain	Validating nodes	Miners	Robustness layer-1 blockchains
User	Transacting parties	Interoperbility	Robustness layer-2 blockchains

э

Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000				

2 Background

- **3** Rewarding Miners
- Interoperability

5 Robustness

・ロット 4回 アメボット 4回 アメロト

Marianna Belotti

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	0●0000	0000000000	00000000	00000	00000

Rationality and Games

Pillars of game theory:

- Agents rationality: players are fully able to analyze the problem (i.e., the game) and take the right decisions.
- **2** Each player is able to **order** the outcomes of the game according to consistent preferences.

 $Game \longrightarrow$ blockchain consensus protocol, mining game, swap protocol $Players \longrightarrow$ validating nodes, transacting parties $Strategy \longrightarrow$ follow the instructions of a protocol or deviate $Payoff \longrightarrow$ value of the final outcome (utility function)

How players play

- Non-Cooperative Games : individually as solo players
- Cooperative Games: in groups forming coalitions

э

Background	Rewarding Miners	Interoperability	Conclusions
000000			

Definitions

Definition (Non-cooperative or Strategic Game)

A game in a normal form representation is identified by a tuple $\Gamma = \langle N, S, u \rangle$, where

- N is a finite set of n players
- $S = S_1 \times S_2 \times \cdots \times S_n$ where S_i is the set of strategies of player *i*
- $u: S \to \mathbb{R}^n$ is the utility function of the players.

Definition (Nash equilibrium)

A strategy profile $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_i, \dots, \sigma_n) \in S$ is a Nash equilibrium if for every player *i* and for every strategy $\tau_i \in S_i$ we have that :

$$u_i(\sigma_1, \sigma_2, \ldots, \sigma_i, \ldots, \sigma_n) \ge u_i(\sigma_1, \sigma_2, \ldots, \tau_i, \ldots, \sigma_n)$$

イロト 不得 トイヨト イヨト 3

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	000●00	0000000000	00000000	00000	00000
Game Rep	presentation	s			

- Sequential games: players play one after the other
 - Normal form games: players' actions do not have an order (can take place simultaneously)

Game Theoretical Analysis of Blockchain Users' Behaviors

æ

<ロト <問 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

00000 00000 00000000 00000 00000 00000	Background	Rewarding Miners	Interoperability	Conclusions
	000000			

BAR: Rational, Altruistic and Byzantine

Both blockchain users are at first modeled as **rational agents**. This game-theoretical modeling enables to capture several behaviors. To be more generic (i.e., including also irrational or unexpected malicious behaviors) blockchain users are modeled also as **Byzantine agents**. Users can be split into 3 categories:

- Byzantine, when they deviate arbitrarily from the protocol
- Altruistic, when they follow the protocol
- Rational, when they act to maximize their utility function

< ∃ > < ∃ >

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	00000●	0000000000	00000000	00000	00000
Overview					

- Belotti et al. "A vademecum on blockchain technologies: When, which, and how." IEEE Communications Surveys Tutorials 21.4 (2019): 3796-3838.
- 2 Belotti et al. "Bitcoin pool-hopping detection." 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI). IEEE, 2018.
- Belotti et al. "Rewarding miners: bankruptcy situations and pooling strategies." Multi-Agent Systems and Agreement Technologies. Springer, Cham, 2020. 85-99. — Bankruptcy (cooperative) games

			Behavior Model
		Rational	Byzantine
Blockchain	Validating nodes	Miners	Robustness layer-1 blockchains
User	Transacting parties	Interoperbility	Robustness layer-2 blockchains

Game Theoretical Analysis of Blockchain Users' Behaviors

Background	Rewarding Miners	Interoperability	Robustness	Conclusions
	• 00 000000			

2 Background

3 Rewarding Miners

Pool-Hopping Assessments Pool-hopping & Block Withholding Modeling

4 Interoperability

5 Robustness

▲□▶▲圖▶▲圖▶▲圖▶ = 回 ろんの

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	000000	0●00000000	00000000	00000	00000

Rational Miners

How to create bitcoins? Mining

SHA256(input, nonce) \leq difficulty target

nonce = full solution and share = next to valid solution. Pools' rewarding systems based on the number of reported shares.

The rewarding method adopted by a pool take into account that:

- Miners are rational agents.
- ► Strategic behaviors: WHEN reporting shares & WHERE directing the effort.
- Division into rounds: time elapsing between 2 full solutions.
- Reward allocation: $R : s \to [0,1]^n$ where $s \in \mathbb{N}^n$ vector of total number of shares reported by each miner in a **round**.

Marianna Belotti

Background	Rewarding Miners	Interoperability	Conclusions
	000000000		

Original rewarding methods

Two types of malicious behaviors are analyzed; pool-hopping and block-withholding.

Original Rewarding Methods:

1 proportional:
$$R_i(\mathbf{s}) = \frac{s_i}{||\mathbf{s}||_1}$$

2 pay-per-share: $R_i(\mathbf{s}) = \frac{s_i}{D}$.

Issues:

• Favoring Pool-Hopping -> change pool during the round.

The longer the round, the less each share is worth

• Block Withholding -> Pools go bankruptcy.

The longer the round, the more each share is worth

 $\exists \rightarrow$

< D > < P > < P > <</p>

	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
		00000000			
Pool-Hopping Assess	ments				

2 Background

3 Rewarding Miners

Pool-Hopping Assessments Pool-hopping & Block Withholding Modeling

Interoperability

5 Robustness

(ロトメ団トメミトメミト ヨーのの(

Introduction 00000	Background 000000	Rewarding Miners	Interoperability 00000000	Robustness 00000	Conclusions
Pool-Hopping Ass	essments				
Investigat	ing the Net	work			

Coinbase transactions, Rewarding transactions, Transferring transactions

- Identify miners -> User sub-network of a *subset* of transactions.
- Identify potential hoppers -> Filtering rewarding transactions.
- Identify real hoppers -> Transactions reordering.

Transaction network -> Address network -> User network

mapping procedure: basic heuristics applied to all network addresses.

Introduction 00000	Background 000000	Rewarding Miners	Interoperability 00000000	Robustness 00000	Conclusions 00000
Pool-Hopping Asses	sments				
Results					

2-pool: Slush and Kano pool (slush and pplns methods) time period: April 6-20, 2016

higher gains hopping i.e., earn on average more than the default miners.

Marianna Belotti

	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
		0000000000			
Pool-hopping & Blo	ck Withholding Mode	eling			

3 Rewarding Miners Pool-Hopping Assessments Pool-hopping & Block Withholding Modeling

4 Interoperability

Marianna Belotti

Introduction 00000	Background 000000	Rewarding Miners ○○○○○○●○○	Interoperability 00000000	Robustness 00000	Conclusions		
Pool-hopping & Block Withholding Modeling							
Incentive C	ompatible R	ewarding Funct	ion				

Division into | rounds | where $||s||_1$ shares are submitted.

proportional:
$$R_i(\mathbf{s}) = \frac{s_i}{||\mathbf{s}||_1}$$
.

2 pay-per-share:
$$R_i(\mathbf{s}) = \frac{s_i}{D}$$

Proposition

(Incentive Compatibility) A reward function R is *incentive compatible* when every miner's best response strategy $\sigma(R)$ reports full solutions immediately.

$$R_{i}^{(ic)}(\mathbf{s}, w) = \begin{cases} \frac{s_{i}}{D} + 1_{\{i=w\}} \left(1 - \frac{||\mathbf{s}||_{1}}{D}\right), & \text{if } ||\mathbf{s}||_{1} < D\\ \frac{s_{i}}{||\mathbf{s}||_{1}}, & \text{if } ||\mathbf{s}||_{1} \ge D \end{cases}$$

where w is the discoverer of the full solution.

Reinterpretation as an outcome of a bankruptcy game

	Background	Rewarding Miners	Interoperability	Conclusions
		0000000000		
Pool-hopping & I	Block Withholding Mc	deling		
Bankrupt	cy Games -	CEL		

Definition

A bankruptcy game on the set N consists of a pair $(\mathbf{c}, E) \in \mathbb{R}^N \times \mathbb{R}$ with $c_i \ge 0$ for all $i \in N$ and $0 < E < \sum_{i \in N} c_i = C$. For each bankruptcy problem $(\mathbf{c}, E) \in \mathbb{B}^N$,

- **Proportional** rule (P): $f(\mathbf{c}, E) = \lambda \mathbf{c}, \qquad \lambda : \sum_{i \in N} \lambda c_i =$
- Constrained equal losses rule (CEL): $f(\mathbf{c}, E) = \max\{c_i - \lambda, 0\}, \quad \lambda : \sum_{i \in N} \max\{c_i - \lambda, 0\} = E$

idea: CEL can prevent pool-hopping.

Marianna Belotti

Game Theoretical Analysis of Blockchain Users' Behaviors

э

イロト 不得 とくきとくきとう

	Background	Rewarding Miners	Interoperability	Conclusions
		000000000		
Pool-hopping & Block	k Withholding Modelin	ng		

New Incentive Compatible Reward Function

$$\widehat{R}_i(\mathbf{s}, w) = \begin{cases} \frac{s_i}{D} + \mathbf{1}_{\{i=w\}} \left(1 - \frac{||\mathbf{s}||_1}{D}\right), & \text{if } ||\mathbf{s}||_1 < D\\ \frac{\mathbf{1}_{\{i=w\}}}{D} + \max\left(\frac{s_i}{D} - \lambda, 0\right) & \lambda : \text{efficiency}, & \text{if } ||\mathbf{s}||_1 \ge D \end{cases}$$

Proposition

The reward function *R* proposed by *Schrijvers et. al.* always gives miners a positive incentive $\delta_{hop} > 0$ to perform pool hopping. CEL-based reward function gives less incentive to pool hopping.

Estimate percentage $p(\alpha)$ non-hoppers and simulate its values.

Game Theoretical Analysis of Blockchain Users' Behaviors

э

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	000000	0000000000	●0000000	00000	00000

2 Background

3 Rewarding Miners

4 Interoperability

6 Robustness

6 Conclusions

・ロト・西・・田・・田・・日・ シャク

Marianna Belotti

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	000000		0000000	00000	00000

Swap Problem

Rational Agent: Rational Transacting Parties

A swap problem is a tuple $\langle \mathcal{A}, \mathcal{O}, b_0, b_*, (u_i)_{i \in \mathcal{O}} \rangle$ where:

- $A = \{1, ..., m\}$ is the set of *assets*;
- $\mathcal{O} = \{1, \dots, n\}$ is the set of owners or agents, with $m \ge n$; $\mathcal{O}_0 = \{1, \dots, n\}$ is the set of owners or agents, with $m \ge n$; $\mathbf{b}_0, \mathbf{b}_* : \mathcal{A} \to \mathcal{O}$ (both surjective) the original and the desired ownership map;
- u_i is the payoff function for owner $i \in \mathcal{O}$ over bundles of assets in $2^{\mathcal{A}}$ such that $u_i(b_0^{-1}(i)) < u_i(b_*^{-1}(i))$ and for any $S, T \in 2^{\mathcal{A}}$ with $S \subseteq T$ we have $u_i(T) \ge u_i(S), \forall i \in \mathcal{O}$.

- Step 1: Decentralized Exchange protocols
- Step 2: Decentralized Swap protocols
- Step 3: Blockchain Swap protocols

Marianna Belotti

Game Theoretical Analysis of Blockchain Users' Behaviors

Background	Rewarding Miners	Interoperability	Conclusions
		0000000	

Decentralized Exchange Protocols

A sequence $\sigma = \{(A^k, O^k, X^k) : |A^k| \ge |O^k|\}_k$, $k \in \{1, \dots, t\}, t \in \mathbb{N} : t \le m$ defines a decentralized exchange protocol where:

- A^k ⊆ A asset involved in the exchange at step k;
- O^k ⊆ O owners involved in the exchange at step k;
- $X^k : A^k \to O^k$ (surjective) specifies the owner $X^k(a) \in O^k$ of any asset $a \in A^K$ at step k;

A decentralized swap protocol is a decentralized exchange protocol where $\{A^k : k = 1, \dots, t\}$ is a partition of A.

Example. $\mathcal{A} = \{a, b, c, d, e\}, \mathcal{O} = \{1, 2, 3\}, b_0 = (1, 1, 2, 3, 3) \text{ and } b_* = (2, 3, 1, 2, 1).$

 $\sigma = (\{\mathbf{a}, \mathbf{c}\}, \{1, 2\}, \{X^1(\mathbf{a}) = 2, X^1(\mathbf{c}) = 1\}), (\{\mathbf{b}, \mathbf{e}\}, \{1, 3\}, \{X^2(\mathbf{b}) = 3, X^2(\mathbf{e}) = 1\}), (\{\mathbf{d}\}, \{2\}).$

Background	Rewarding Miners	Interoperability	Conclusions
		0000000	

Decentralized Blockchain Swap Protocols

Assets involved in the swap should be *locked* for the following reasons:

- (i) consequently to failures in the assets locking, the initial situation must be restored;
- (ii) once an asset transfer is committed all the other transfers have to be committed, too.

Any transfer should be conditioned on the correct asset locking.

A decentralized blockchain swap protocol is defined by the pair (σ_P, σ_T) where

- $\sigma_P = \{(A^j, O^j)\}_{j \in \{1, \dots, t_P\}}$, $t_P \in \mathbb{N} : t_P \leq m$, $A^j \subseteq A$, $O^j \subseteq \mathcal{O}$ is a sequence such that $\forall j \in \{1, \dots, t_P\}$, $O^j = \{o \in \mathcal{O} : o \in b_*(A^j) \lor o \in b_0(A^j)\};$
- $\sigma_T = \{(A^k, O^k, X^k)\}_{k \in \{1, \dots, t_T\}}$ is a swap protocol engendering the sequence of maps $b_1^{\sigma_T}, \dots, b_{t_T}^{\sigma_T} : \mathcal{A} \to \mathcal{O}.$

Game Theoretical Analysis of Blockchain Users' Behaviors

э

Background	Rewarding Miners	Interoperability	Robustness	Conclusions
		0000000		

Strategic and Extensive form Games

Definition

A decision function as a map $F : \{1, \ldots, t\} \to \mathcal{O} \cup \mathcal{T}$ that specifies which owner F(k) has the power to decide at step k whether to transfer A^k to O^k . F_T is effective on σ_T iff $F_T(k) = O^k$ for any $k \in \{1, \ldots, t_T\}$.

- 1 Swap protocols with sequential publishing and commitment.
- **2** Swap protocols with *concurrent publishing* and *snap commitment*.
- **1** Extensive games: sequential phases.
- **2** Normal form games: concurrent phase.

Strategies:

- Follow: each player follow the protocol in every step.
- **Deviate**: the player decide to behave *irrationally* or *maliciously* and decide not to publish or not to trigger a transaction.

Background	Rewarding Miners	Interoperability	Conclusions
		0000000	

Sequential (Nolan) and Concurrent-Snap protocols

Alice swaps x Acoins for y Bcoins owned by Bob.Nolan's first protocol for UTXO-based blockchains (not atomic). $\sigma_P = \{(x, B), (y, A)\}, F_P(j) = \{A, B\}, j = \{1, 2\}; \sigma_T = \{(y, A), (x, B)\}, F_T(k) = \{A, B\}, k = \{1, 2\}.$

Atomic protocol with central authority. $\sigma_P = \{(\{x, y\}, \{A, B\})\}, F_P(j) = \{A, B\}, j = \{1\}; \sigma_T = \{(\{x, y\}, \{A, B\}, \{X^1(x) = B, X^1(y) = A\})\}, F_T(k) = T, k = \{1\}.$

Marianna Belotti

Game Theoretical Analysis of Blockchain Users' Behaviors

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	000000	0000000000	000000●0	00000	00000

Results

Proposition

Let Γ^{σ} be the extensive form game associated with a sequential swap problem, if F is effective, then the strategy profile $(\hat{s}_1, \ldots, \hat{s}_n)$ that specifies action 1 (follow the protocol) at any node is the unique subgame perfect equilibrium.

Marianna Belotti

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	000000	0000000000	0000000●	00000	00000
Results -	part 2				

Proposition

Let Γ be the strategic form game associated with a swap problem characterized by a concurrent publishing and a snap commitment where the decision function F_T is such that $F_T(k) = T \in T \forall k \in \{1, ..., t_T\}$. Then, the strategy profile $(s_1, ..., s_n)$ that specifies action 1 for every player is a Nash equilibrium.

Game Theoretical Analysis of Blockchain Users' Behaviors

э

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	000000	0000000000	00000000	●0000	00000

2 Background

- **3** Rewarding Miners
- Interoperability

・ロト ・回 ト ・ヨト ・ヨト ・ 回 ・ つへで

Marianna Belotti

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	000000	0000000000	00000000	0●000	00000
Goal and	Approach				

- Byzantine, when they deviate arbitrarily from the protocol
- Altruistic, when they follow the protocol
- Rational, when they act to maximize their utility function

		Behavior Model			
		Rational Byzantine			
Blockchain	Validating nodes	Miners	Robustness layer-1 blockchains		
User	Transacting parties	Interoperbility	Robustness layer-2 blockchains		

 $\underline{Goal}.$ Characterize and measure in a formal and general way the robustness of a blockchain protocol.

Approach.

- List all the protocol instructions
- · Identify all the possible behaviors of the users when facing the protocol
- List and evaluate all the possible outcomes

э.

Background	Rewarding Miners	Interoperability	Robustness	Conclusions
			00000	

Model - Mechanism and Robustness Properties

Definition

A game in a normal form representation is identified by a tuple $\Gamma = \langle N, S, u \rangle$. A **mechanism** is a pair (Γ, σ) in which $\Gamma = \langle N, S, u \rangle$ is a game and $\sigma \in S$ is a joint strategy.

We fix the maximum number of rational players allowed in a game such that the protocol still provides the same utility to altruistic players.

Property

A joint strategy $\sigma \in S$ is a **k-resilient** equilibrium if for all $C \subseteq N$ with $1 \leq |C| \leq k$, all $\tau_C \in S_C$ and all $i \in C$, we have $u_i(\sigma_C, \sigma_{-C}) \geq u_i(\tau_C, \sigma_{-C})$.

3

Background	Rewarding Miners	Interoperability	Robustness	Conclusions
			00000	

Model - Mechanism and Robustness Properties

We fix the maximum number of byzantine players allowed in a game such that the altruistic players always get at least the utility of the initial state.

Property

A joint strategy $\sigma \in S$ is t-weak-immune if for all $T \subseteq N$ with $|T| \leq t$, all $\tau_T \in S_T$ and all $i \in N \setminus T$, we have $u_i(\sigma_{-T}, \tau_T) \geq 0$.

Definition

Given 2 games *A*, *B* with the same set of players *N* it is possible to define a new game $C = A \odot B$, called **composition** of *A* and *B*, which is characterized as follows. $C = \langle N, (s_{Ai}, s_{Bi}), u_A + u_B \rangle$.

The compositions preserves the robustness properties

э

イロン イヨン イヨン -

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	000000	0000000000	00000000	0000●	00000
Results					

Here some indices to measure robustness of *layer-1* (users = validating nodes) and *layer-2* (user = transacting parties) blockchain protocols

Protocol	k-Resilience	t-Weak Immunity
Tendermint	Yes, k < $n/3$	Yes, t $< n/3$
Bitcoin	Yes, k $< 3n/20$	No
Lightning Network	Yes, k $< 3n/20$	No
Closing module	Yes	No
(Alternative closing module)	(Yes)	(Yes)
Other modules	Yes	Yes
Side-chain (Platypus)	Yes, k < $n/3$	Yes, t $< n/3$
Cross-chain Swap	Yes	Yes

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	000000		00000000	00000	●0000

2 Background

- **3** Rewarding Miners
- Interoperability

5 Robustness

・ロ・・西・・ボ・・ボ・・ 日・ うらの

Marianna Belotti

Introduction	Background	Rewarding Miners	Interoperability	Robustness	Conclusions
00000	000000	0000000000	00000000	00000	00000
Present V	Vorks				

- Belotti et al. "A vademecum on blockchain technologies: When, which, and how." IEEE Communications Surveys Tutorials 21.4 (2019): 3796-3838.
- 2 Belotti et al. "Bitcoin pool-hopping detection." 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI). IEEE, 2018.
- Belotti et al. "Rewarding miners: bankruptcy situations and pooling strategies." Multi-Agent Systems and Agreement Technologies. Springer, Cham, 2020. 85-99.
- Belotti et al. "Game theoretical analysis of atomic cross-chain swaps." 40th IEEE International Conference on Distributed Computing Systems (ICDCS). 2020.
- Sappalà, Belotti et al. "Game theoretical Framework for Analyzing Blockchains Robustness." International Symposium on Distributed Computing (DISC). 2021.

Background	Rewarding Miners	Interoperability	Robustness	Conclusions
				00000

Present Works - Industrial Side

User as **early adopter** facing several challenges: using the technology, respecting the regulation and which role to assume in a blockchain protocol.

Marianna Belotti

Game Theoretical Analysis of Blockchain Users' Behaviors

2

Background	Rewarding Miners	Interoperability	Conclusions
			00000

Future Works

Future working directions.

- **1** Rational Behaviors. modeling blockchain systems with fewer assumptions.
- **2** Solution Concepts. analysis of blockchain users' behaviors with other solution concepts.
- **3** Blockchain Users' Behaviors. extend analysis not only to new blockchain protocols but also to include new protocol deviations.
- **4 Rewarding Miners**. applying the analysis to other crypto-currencies with comparable and new consensus methods.

3

	Introduction E	Background 000000	Rewarding Miners 000000000	Interoperability 00000000	Robustness 00000	Conclusions 0000●
--	----------------	----------------------	-------------------------------	------------------------------	---------------------	----------------------

Thanks for the Attention

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ○○

Marianna Belotti