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CONTEXTUALIZATION

Where we are”? Where we are going?




Contextualization

The age of boundless connectivity

° Different types of services
° autonomous car
° virtual reality

.
© indus’%4.0

° New needs
° speed
° capacity
° availability

’ .

° A solution

° Network Slicing




Contextualization

What is Network Slicing?

° Set of logical networks on top of a shared physical infrastructure.
° Each logical network is designed to serve a defined business purpose.
° Comprises of all the required network resources.
° Ensures all technical constraints.




Modeling Aspects

How to deploy an end-to-end network slice.



Modeling Aspects

The 5G entities
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Network Slice Subnet (NSS)
° control-plane NSS, data-plane NSS, ...
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Modeling Aspects

Control and data plane separation and sharing policies

Flat Sharing Hard Isolation
Isolation o
° Security requirements Y  (DP 2 k>
Easier network management Shared Control-Plane * Partial Control-Plane Isolation
Sharing | <>D-CP 1
>DP 2«<>D-CP2

° Decrease redundancy

Partial Data-Plane Isolation
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° Faster set-up
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«— > data and signaling flow for Communication Service 1
«——— > data and signaling flow for Communication Service 2
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Modeling Aspects

Control and data plane separation and sharing policies

Flat Sharing
° Similar technical constraints

Hard Isolation

_ Flat Sharing
Hard Isolation _

° Security : slices are fully isolated

ﬁi

'-(—)

Shared Control-Plane Shared Control-Plane

° Low-latency on dedicated Data-Plane (D-DP)

Partial Control-Plane Isolation

Sharing only non-crucial CP functions " Partial Data-Plane Isolation
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>D-DP 2 CP 2

Shared Data-Plane
° Dedicated Control-Plane (D-CP)

N

«— > data and signaling flow for Communication Service 1

Partial Data-Plane Isolation | »
O Sharing only non-crucial DP functions «——— > data and signaling flow for Communication Service 2 }
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Modeling Aspects

Functional splitting on radio access networks

° Decide which networks functions (NF) are:
° Locally installed on each distributed unit (DU)
° Centrally installed on few centralized units (CU)

° Must take into consideration
° Fronthal bandwidth
° DU-CU connection latency
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The Network Slice Design Problem

Definition :: Complexity :: Variants :: MILP :: Sensibility Analysis



The Network Slice Design Problem
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The Network Slice Design Problem

Problem Statement

Given:
° a directed graph G representing the physical network,

° a set of slice requests S
° a set of traffic demands K(s) associated with each request sin S

° and a set F of NFS types The
Network
Slice Design
The Network Slice Design Problem (NSDP) consists in determining: problem is

° the number of NFSs to install for each slice, NP-complete even

with only one slice
request.

° the size of each NF hosting them
°> whether they are to be installed centrally or distributed

So that:
° NFSs installed on G must be packed into the NFs while satisfying both isolation and capacity constraints
° the data-flow between any pair of NFs can be controlled and routed in G
° the deployment cost is minimized

13



The Network Slice Design Problem

A Mixed-Integer Linear Programming Formulation for the NSDP
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The Network Slice Design Problem

Sensibility Analysis
Test setting

Vlrtual Layer [ A access node (DU) @ aggregationnode (@ corenode ¢ application node — link ]

— 5 data-plane NFSs
— NFS1 : functions from MAC bloc
— NFS2 : functions from RLC bloc
— NFS3 : functions from PDCP bloc
— NFS4 : functions from RRC bloc
— NFS5 : data-plane UPF from 5G core network a) Mandala b) Tree c) Sun
— 8 control-plane NFSs
- 4 mandatory : NFS6, NFS7, NFS8, NFS9
— 4 optional : NFS10, NFS11, NFS12, NFS13

— Processing capacity : 100% the average volume sent by all DUs.
— CPU requirement : 5% of the average capacity on physical nodes.

— Compression coefficients for DP NFSs : as calculated in by Larsen et al (2018)
— Max latency

— between DP NFSs : as proposed by 3GPP

— between CP NFSs : 5% of the total CP latency proposed by 3GPP

15



The Network Slice Design Problem
Sensibility Analysis

Test setting
= Network Slice
— 4 requests, each of which with 8 traffic demands
— DP-CP connexion : between one NFS6 and all DP NFSs
— All CP NFSs must be connected to each other
— 25% of available DUs are set to be an origin node of all NS requests
— Target application nodes : evenly distributed

i

TABLE — Simulated slice demand setting. Source : adapted from NGMN's White Paper (2015)

Slice Service required Optional CP NFSs Max E2E latency UE data rate UE per DU
1 Broadband access in dense areas NFS10, NFS11 10ms 300Mbps 600
2 Ultra-low cost broadband - 10ms 10Mbps 600
3 Real-time communication NFS11, NFS12, NFS13 1ms 25Mbps 180
4 Video broadcast NFS10, NFS11 100ms 200Mbps 60




The Network Slice Design Problem

Sensibility Analysis

TABLE — Scenarios : Split setting and sharing policies

Split Description
setting 1 all DP NFS are installed locally for all NS requests.
setting 2 for each slice, only NFS5 is installed centrally.
setting 3 for each slice, NFS4 and NFS5 are installed centrally. It correspond to 3GPP’s split 1.
setting 4 for each slice, only NFS1 and NFS2 are distributed ; it corresponds to 3GPP’s split 2.
setting 5 for each slice, only NFS1 is installed locally. It corresponds to 3GPP’s split 4.
setting 6 all DP NFSs are installed centrally for all NS requests. It corresponds to 3GPP’s split 6
Flexible free functional split selection for each NS request.
Policy Description
Hard Isolation NS requests do not accept sharing any NFS.
Shared DP only DP NFSs can be shared among the slices
Shared CP only CP NFSs can be shared among the slices
Partial DP Isol. NFS4 and NFS5 cannot be shared among the slices
Partial CP lIsol. optional NFSs cannot be shared among the slices.
Flat Sharing NS requests do not impose any isolation constraint.

17



The Network Slice Design Problem

Sensibility Analysis
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The Network Slice Design Problem

Sensibility Analysis

Physical node load
"Relatively strong influence from different sharing polices
" Opposite impacts on different physical node types

sharing policy —e— hard -= shared CP shared DP —+ partial CP — partial DP —— flat
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The Network Slice Design Problem

Sensibility Analysis

Physical link load
“Strongly impacted by centralized NFS-based split settings
"Relatively small influence from different sharing polices

sharing policy —e— hard -= shared CP shared DP —+ partial CP — partial DP —— flat
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Exact Approaches for the NSDP

Model Strengthening :: Row Generation



Exact Approaches

Model Strengthening

Symmetry-breaking constraints
° Assign the NFs in an ordered way
° NF n cannot host any NFS if NF n-1 hosts no NFS

wZ{LSZZfo_M Vs e S,Vf € F,Yu € V,Yn € N\{n:}

teS geFveV

Lower-bound inequality
> minimum number of NFSs needed to satisfy all the slice requests of S
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Exact Approaches

Model Strengthening

Shortest path-based inequalities
° For each traffic demand k
° sp(k) be the end-to-end latency on the shortest path between its origin and target nodes
° Considering the capacity of the related links
° Using Dijksitra’s algorithm

D d (’Yf|pd|fo > Yf$+1) > sp(k) Vk € K(s):s€S
a€Ayp FE{fo}UF\{f pa)}

Example : 100Gbs as expected flow

ggggs a1 - (50Gbs, 10ms) ‘?Oggsb a1 - (50Gbs, 10ms)
2_.32. 1OOGbs 100ms 23 1OOGbs 100ms

(a) Without SP valid inequality. ) With SP valid inequality.
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Exact Approaches

Model Strengthening

Minimum cut-based inequalities
° based on one min-cut max-flow theorem of Ford and Fulkerson
° « the maximum flow is equal to the minimum cut separating the related origin and target nodes »
> A(k) are the min-cuts separating the origin and target nodes of k
° we consider the fully compressed expected flow from the DP traffic
° cuts found with Edmonds-Karp’s algorithm, Dinic’s algorithm, and Boykov-Kolmogorov algorithm

St X Mzl WeKo:eswear
a€d fE{fO}UFd\{f|Fd|}

Example : 100Gbs as expected compressed flow

Eminimum cut 1 ‘minimum cut 2 Z'minimum cut 3

ok :
a1 - (50Gbs. 10ms) - (50Gbs, 10ms) - (50Gbs, 10ms)
32 (100Gbs, 100m - (100Gbs, 100ms - (100Gbs, 100m

24



Exact Approaches

Row Generation

° Reduced MILP based on the original compact formulation
° Only with:
° split selection inequalities

Overall Idea

° dimensioning equations
° packing inequalities
° placement constraints
° routing constraints
° Integrality constraints
° The reduced MILP can be up to 98% smaller

° Remained isolation, capacity, and latency
° applied as lazy constraints within the branch-and-bound framework
°if the current solution violates any lazy constraint, the latter is added as cut to the reduced model
° parallelized framework

° each thread is responsible for searching and adding the violated constraints
25



Exact Approaches

Model Strengthening Numerical Results

° Test Setup

° Cplex 12.10 : solver’s pre-solving routines disabled
> Time limit set to 3600 seconds
° Three instance sizes (30 tests on each size)

Instance size |V| Graph density |S] F
Tiny (T) 10 0.15 2 1 2 2
Small (S) 15 0.10 2 2 4 2
Medium (M) 20 variable 4 3 4 3

Linear Relaxation Gap

MILP | MILP + SB | MILP + LB | MILP + MC | MILP + SP | MILP + All

28,50 % 28,50% 12,12% 28,50% 28,50% 12,12 %

DTE e 2387 % 23,87% 10,25%  23,87% 23,87% 10,25 %
Final Gap

MILP | MILP + SB | MILP + LB | MILP + MC | MILP + SP | MILP + All
8,87% 5,50 % 3,50 % 5,75 % 6,12 % 3,12 %
___ Small

17,37 % 10,75 % 6,62 % 11,75 % 12,00 % 6,00 %

26



Exact Approaches

Numerical Results
Model Strengthening

° Lower-bound (LB) inequality
° Better gap after solving the related LP

° Symmetry-breaking (SB), Min-Cut (MC), and Shortest Path (SP) inequalities
° Improved final gap

° Best final gap with all proposed inequalities

Instance size |V| Graph density |[S| F
Tiny (T) 10 0.15 2 1 2 2
Small (S) 15 0.10 2 2 4 2
Medium (M) 20 variable 4 3 4 3

Linear Relaxation Gap

MILP | MILP + SB | MILP + LB | MILP + MC | MILP + SP | MILP + All

28,50 % 28,50% 12,12% 28,50% 28,50% 12,12 %

DTE e 2387 % 23,87% 10,25%  23,87% 23,87% 10,25 %
Final Gap

MILP | MILP + SB | MILP + LB | MILP + MC | MILP + SP | MILP + All
8,87% 5,50 % 3,50 % 5,75 % 6,12 % 3,12 %
___ Small

17,37 % 10,75 % 6,62 % 11,75 % 12,00 % 6,00 %
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Exact Approaches

Numerical Results

Row Generation

° Medium-size instances: 30 tests with each graph (physical network) density
° Solver’s pre-processing routines activated

° Row generation outperformed classic BB in all instance classes
° final gap smaller than 10% in more than 90% of all instances

° Branch-and-Bound has better performance in high-density graphs
° Outperformed Strengthened Reduced Model within the Row Generation framework

Approach: == Branch-and-Bond on original MILP = ' Row-Generation == Row-Generation+(LB,SB,MC,SP)
1.00 TR L]

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
final relative gap final relative gap final relative gap final relative gap

a) graph density: 0.10 b) graph density: 0.25 c) graph density: 0.50 d) graph density: 1.00



Heuristic Approaches for the NSDP

Math-Heuristic :;: Relax-and-Fix



Heuristic Approaches

A Math-Heuristic for the NSDP

Algorithm 1: Math-heuristic for the NSDP

input : An NSDP instance I(G,S,F,N,C).
output: A solution to .
1 BestSolution, CurrentSolution <+ 0

2 while a feasible solution to 1 is not found do
chooseCUs()
foreach s € S do
foreach k € K(s) do
| getPaths() ;

 choosePaths() ;

8 selectSplit()
9 while a feasible embedding is not found or
maximal number of tries is reached do

A i A W

~

10 if N < packNFSs() ;

11 is not feasible then stop and go to step 3;

12 else if embedNFs() fails or maximal number of
tries is reached then stop and go to step 3;

13 if routing() fails,
14 then stop and go to step 3 ;

15 if CurrentSolution is feasible and
cost(CurrentSolution) < cost(BestSolution) then

16 BestSolution <— CurrentSolution

17 if rand() > p then

18 try to find another solution to I by going to

step 3
19 else
20 return BestSolution

Overall Idea

° Decomposing the NSDP into several sub-problems
° Split Selection
° NFS-NF packing
°> NF-Node embedding
° Traffic routing

° Input
° a direct graph G (physical network) and capacities
°a set S of slice requests with traffic demands K(s)
°aset F of NFS types
° a set N of potential host virtual functions

° Qutput

° a virtual network for each slice request ensuring all
technical constraints
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Heuristic Approaches

A Math-Heuristic for the NSDP

Algorithm 1: Math-heuristic for the NSDP

input : An NSDP instance I(G,S,F,N,C).
output: A solution to .
1 BestSolution, CurrentSolution <+ 0

2 while a feasible solution to 1 is not found do
chooseCUs()

foreach s € S do

foreach k € K(s) do

I_ getPaths() ; /* By Yen’s algorithm =*/

choosePaths() ; /* See ILP (3)-(7) */

selectSplit
9 while a feasible embedding is not found or
maximal number of tries is reached do

10 if N < packNFSs() ;

11 is not feasible then stop and go to step 3;

12 else if embedNFs() fails or maximal number of
tries is reached then stop and go to step 3;

13 if routing() fails,
14 then stop and go to step 3 ;

15 if CurrentSolution is feasible and
cost(CurrentSolution) < cost(BestSolution) then

16 BestSolution < CurrentSolution

17 if rand() > p then

18 try to find another solution to I by going to

step 3
19 else
20 return BestSolution

Split Selection
° Create a set with the most centralized CUs

° Chose the best path for each traffic demand
° Select the split setting for each slice

max Z T Zuy
u,veVh|utvy

Y =1 VkeK(s):s€S
pEP(k)

Z Z AL{",X;:ZW Nu,ve Vi u#vy
k€K (s) peP(k)
x5 €{0,1} Vk € K(s)|s € S,Vp € P(k)
Z € No Nu,veViu#vy

° Try to find a path for each traffic demand passing by the
centralized CUs

3)

4)
)

(6)
(7)

31



Heuristic Approaches

A Math-Heuristic for the NSDP

Algorithm 1: Math-heuristic for the NSDP

input : An NSDP instance I(G,S,F,N,C). NFS-NF paCking
output: A solution to .
1 BestSolution, CurrentSolution < @ ° Create conflict graph C
2 while a feasible solution to 1 is not found do _ _
3 | chooseCUs() ° each built NFS is now a vertex
4 | foreach sc S do _ _ _ _
5 foreach k € K(s) do ° isolation and capacity constraints as edges
6 I_ getPaths() ] /* By Yen’s algorithm x/
7  choosePaths() ; /* See ILP (3)-(7) */

8 selectSplit()
while a feasible embedding is not found or
maximal number of tries is reached do

° Color the the conflict graph C
° several times In parallel

if N < packNFSs() ;
is not Jeastble then stop and go to step 5 ° Greed approach with random vertex ordering
12 else if embedNFs() fails or maximal number of
| fries is reached then stop and go to step 3; ° compare each try to the max-cligue number (theorical LB)
13 if routing() fails, _
14 then stop and go to step 3 ; ° take the best Colorlng
15 if CurrentSolution is feasible and
cost(CurrentSolution) < cost(BestSolution) then
16 BestSolution < CurrentSolution _ _
17 if rand() > p then ° All vertex (NFSs) with the same color are packed into the same NF
18 try to find another solution to I by going to
step 3
19 else
20 return BestSolution




Heuristic Approaches

A Math-Heuristic for the NSDP

Algorithm 1: Math-heuristic for the NSDP

input : An NSDP instance I(G,S,F,N,C).
output: A solution to .
1 BestSolution, CurrentSolution <+ 0

2 while a feasible solution to 1 is not found do

3 chooseCUs()

4 foreach s € S do

5 foreach k € K(s) do

6 I_ getPaths() ; /* By Yen’s algorithm x/
7  choosePaths() ; /% See ILP (3)-(7) */

8 selectSplit()
9 while a feasible embedding is not found or
maximal number of tries is reached do

10 if N < packNFSs() ;

11 is not feasible then stop and go to step 3;

12 else 1t embedNFs() fails or maximal number o
tries is reached then stop and go to step 3;

13 if routing() fails,
14 then stop and go to step 3 ;

15 if CurrentSolution is feasible and
cost(CurrentSolution) < cost(BestSolution) then

16 BestSolution <~ CurrentSolution

17 if rand() > p then

18 try to find another solution to I by going to

step 3
19 else
20 return BestSolution

NF-physical node embedding

° Solved as a Bin-Packing Problem

°F

° Each NF is now an object
° Each physical node is now a bin

\andomly solved several times in parallel
> Return the best packing
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Heuristic Approaches

A Math-Heuristic for the NSDP

Algorithm 1: Math-heuristic for the NSDP

input : An NSDP instance I(G,S,F,N,C).
output: A solution to .
1 BestSolution, CurrentSolution <+ 0

2 while a feasible solution to 1 is not found do

3 chooseCUs()

4 foreach s € S do

5 foreach k € K(s) do

6 I_ getPaths() ; /* By Yen’s algorithm x/
7  choosePaths() ; /% See ILP (3)-(7) */

8 selectSplit()
9 while a feasible embedding is not found or
maximal number of tries is reached do

10 if N < packNFSs() ;

11 is not feasible then stop and go to step 3;

12 else if embedNFs() fails or maximal number of
tries is reached then stop and go to step 3;

if routing() fails,

then stop and go to step 3
15 if CurrentSolution is feasible and

cost(CurrentSolution) < cost(BestSolution) then
16 BestSolution <~ CurrentSolution
17 if rand() > p then
18 try to find another solution to I by going to
step 3

19 else
20 return BestSolution

Traffic Routing

° Create a set of feasible paths for each flow
> By Yen’s algorithm
° Randomly chose a path for each flow
°> Verify overall resource consumption
° Run several times if necessary or until stop criteria is reached

34



Heuristic Approaches

A Math-Heuristic for the NSDP

Algorithm 1: Math-heuristic for the NSDP

input : An NSDP instance I(G,S,F,N,C).
output: A solution to .
1 BestSolution, CurrentSolution <+ 0

2 while a feasible solution to 1 is not found do Returnlng the best solution
3 chooseCUs() : :
. | foreach s € S do ° Tabu Search-inspired
5 foreach k € K(s) do : ey :
) | getPaths() ES) /% By Yen's algorithm +/ ° Save the solution if it is feasible
i ° Try to find another solution if;
8 selectSplit
il anber o e ° Current solution is not feasible
maximal number of tries is reached do
o || N paddiEos) ; ° Stop criteria is not reached (overall runtime related)
11 is not feasible then stop and go to step 3;
12 else if embedNFs() fails or maximal number of
tries is reached then stop and go to step 3;

13 if routing() fails,

14 then stop and go to step 3 ;

if CurrentSolution is feasible and
cost(CurrentSolution) < cost(BestSolution) then

BestSolution <— CurrentSolution

if rand() > p then

try to find another solution to I by going to
step 3

else
return BestSolution




Heuristic Approaches

A Relax-and-Fix algorithm for the NSDP
with dedicated NFs o A S0P ONF s 16 5 7N G g3 perg ey

output:A solution (if there exists one) to I.

1 N* «— {m}
overa" Idea 2 Create m.odel M;. o
3 Relax all integrality constraints in M
° Starting without NFS-NF packing sub-problem : :r:e;§;

6 Let S* be the set of embedded NSs: set it to a set
7 while S* # S and feasibility condition is respected do

; Repetltlvely SOIVe the proposed (M) I LP 8 Set IntSlices to the first p slices in S\S*
° Only a few integer/binary variables ° | foreachsinintdlices do o
10 L enforce integrality on all related variables in M
° Relaxing and Fixing most of the remaining integer/binary variables N
12 if a feasible solution is found then
13 foreach s in IntSlices do
° Solve NFS-NF packing sub-problem with Vertex Coloring 14 | Fixvalues on all related variables in M
o) COnﬂ |Ct g raph 15 Add IntSlices to S*
16 p—p
17 else if S* # @ then
18 Remove the last embedded slice from S*
19 p—p+1;
20 else
21 i Stop: no feasible solution exists

22 if M is feasible then
23 PackNFSs() ;
24 return the complete solution to [

25 else

26 return no solution 36



Heuristic Approaches

A Relax-and-Fix algorithm for the NSDP
with dedicated NFs o A S0P ONF s 16 5 7N G g3 perg ey

output:A solution (if there exists one) to I.
1 N* « {n1}

Pacing Strategy 2 Create model M;
_ o 3 Relax all integrality constraints in M
° Slice-based decomposition + OrderS;
. . _ . 5 pe—p;
; S|IC6 Orderlng' CapaCIty! Iatency5 randomly 6 Let S* be the set of embedded NSs: set it to a set

7 while S* # S and feasibility condition is respected do

) ) 8 Set IntSlices to the first p slices in S\S*
On eaCh Itel‘atIOn 9 foreach s in IntSlices do
. . . . . f integrali Il related variables in M
° Restore integrality constraints on all variables related to a sub-set S* of slices” S(Ev::‘m sy onalreaedvarebes 1
© SOIVe (M) I LP 12 if a feasible solution is found then
. . 1 f h s in IntSlices d

° Fix found values on all variables related to S* ) | Fixvalues on ll related variabes n

© Create new S* 15 Add IntSlices to S*

o 16 p—p

Repeat 17 else if S* # @ then

18 Remove the last embedded slice from S*
19 p—p+1;
20 else
21 i Stop: no feasible solution exists

22 if M is feasible then
23 PackNFSs() ;
24 return the complete solution to [

25 else

26 return no solution 37



Heuristic Approaches

Numerical Results

Different instance classes

° Strict versus Relaxed latency constraints
° Tight versus Moderate capacity on physical network
° Strong versus Weak isolation constraints

Different instance sizes

Instance size V|  Graph Density* |[S| |K
Tiny (T) 10 0.15 2 1 2 2
Small (S) 15 0.10 2 2 4 2
Medium-Small (SM) 20 0.15 4 3 4 3
Medium (M) 25 0.15 4 8 6 4
Medium-Big (MB) 30 0.20 4 8 6 6
Big (B) 35 0.20 8 8 8 6
Extra-Big (EB) 40 0.25 8 8 8 8

* Ratio between exiting and theoretically possible number of arcs.



Heuristic Approaches

Numerical Results

Math-Heuristic

° Tiny instances with moderate capacity constraints were solved faster
° less than 1 second in general

° More than 80% of tiny instances had a gap smaller then 2%

° We did not observe any significant impact from different instance classes on bigger instances

instance class == <-MHW> == <-MLW> == <-TLS> == <-MLS> == <-THW> - <-TLW>

1.00
0.75
0050
0.25
000
100 150 500 1000 1500 2000 500 750 10000.0 . 100 O
runtime (s) number of solutions iteration gap % gap (%

a) total runtime: tiny b) # feasible solutions: tiny c) iteration best solution: tiny d) final gap: tiny e) average gap: tiny
39



Heuristic Approaches

Numerical Results

Math-Heuristic

° Feasible solution found for all instance sizes
° Faster than MILP

° Better gap on bigger instances
> Medium-big instances : from 36% to 4%

Instance Size

Runtime (s)
Medium-Small 2165 + 364

Medium 3600*
Medium-Big 3600*
Big 3600*
Extra-Big 3600*

Math-Heuristic
Gap (%) Runtime (s)  Gap (%)
0 732 = 87 3.2 & 0.5
5.7 £ 2.1 803+t 122 4.510.7
36.3 = 4.8 894 + 109 4.31+1.2
x 997 = 84 8.21+3.6
ok 1245 + 241 11.54+2.4

* Time limit reached.

** No feasible solution was found.
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Heuristic Approaches

Numerical Results

Relax-and-Fix

° Better solutions quality with bigger pacing strategies

> Runtime increases as the pacing strategy gets bigger

° bigger increases from 3-slice pacing to 4-slice pacing in smaller instances

pacing strategy . 1-slice . 2-slice .3-slice - 4-slice

6
7.5
§5_0 §4 o\° o\°10
Q Q Q9 Q
S &2 % S .
GGG R Rl R
capacity latency random capacity latency random capacity latency random capacity latency random
ordering ordering ordering ordering
a) gap: medium small b) gap: medium c) gap: medium big d) gap: big
500
400 3000
@ @00 ol @
o2 o d) O
£ £ £40 g0
1= €200 1= 1=
i i i ii ) I ) i ii I
capacity latency random capacnty latency random capacnty latency random capacnty latency random
ordering ordering ordering ordering

e) runtime: medium small f) runtime: medium g) runtime: medium big h) runtime: big



Relax-and-Fix

Numerical Results

° Random ordering and 1-slice pacing strategies

> Runtime : outperformed ILP on all instance sizes

° Good solution even for big instances

° No significant impact from different instance classes

ILP

Instance Size Gap (%) Runtime (s)
Tiny 0.0 513
Small 0.0 248149
Medium Small | 26.5+2.3 3600*
Medium 48.4+28.8 3600*
Medium Big 82.81+32.2 3600*
Big % 3600*

Heuristic Approaches

Relax-and-Fix

Gap (%)

1.14 = 1.1
1.65 = 0.3
8.44+0.2
5.77t0.1
4.3110.06
5.90+0.1

Runtime (s)

0.03+0.01
0.23+0.1
97128
178137
319+49

9071158

* Time limit reached.

** No feasible solution was found.
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Concluding Remarks

Summary :: Perspectives



Conclusion

Concluding Remarks

Exact Approaches

Branch-and-Bound

Summing Up

Branch-and-Cut
Non-Exact Approach ° I\/IOdeling and Optimiza’[ion of 5G network deSign

2-Phase Heuristic

D2D Communication
Domain Creation Problem

° Domain Creation problem with D2D communication
° Exact and Non-Exact Approaches

Exact approaches

Branch-and-Bound

Branch-and-Cut k Slice Design
Row-Generation ‘nt Vari antS
° Several approaches

Non-Exact Approach

Math-Heuristic

° Contributions
° 4 published papers

Exact Approaches ° 2 submitted papers
Branch-and-Bound . .
ranch-and-Boun ° 1 paper In preparation

Network Slicing

Modeling and optimization of 5G network design
Network Slice Design Problem (NSDP)

Column-Generation

With Dedicated NFs

it

Non-Exact Approach

Relax-and-Fix 44



Perspectives and Future Works
° New NSDP Variants
° with Multi-Access Edge Computing for RAN slice subnets
° service-aware objective functions
° availability constraints

° Relax-and-Fix
° pacing strategies based on NFs, traffic demands, variables, etc...

° Clustering pre-processing
° based on geographical zone, required service, etc...
° Solve smaller clustered NSDP instances in parallel

Conclusion
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