Novel anomaly detection and classification algorithms for IP and mobile networks

Thesis defended on December 14, 2020 before a jury composed of:

Marco Fiore, IMDEA Networks Razvan Stanica, INSA Lyon, Inria Clémence Magnien, CNRS, Sorbonne Université Aline Carneiro Viana, Inria Saclay Sahar Hoteit, Université Paris Saclay, Centrale-Supélec Sandra-Scott Hayward, Queen University Belfast Thi-Mai-Trang Nguyen, CNRS, Sorbonne Université Stefano Secci, Conservatoire National des Arts et Métiers Vania Conan, Thales Mathieu Bouet, Thales

THALES

Agathe Blaise

Reviewer Reviewer Examiner Examiner Examiner Invited member Invited member Supervisor Supervisor Supervisor

SORBONNE UNIVERSITÉ

ecnam

Data analysis

Potentially thousands of logs to handle each day

Knowledge discovery:

- Find underlying patterns
- Define generic model for learning

- **Data:** logs of communications, list of transactions, actions of the users, etc.

At first sight: **indecipherable** and no obvious patterns

State-of-the-art: rather complex, fine-grained approaches e.g., neural networks, graph-based techniques

Very expensive computationally and not fit for real networks

Numerous anomalies

- Correlate them to find events
- Investigate root causes, identity of attackers, modus operandi...

Data analysis techniques

Statistical techniques

"A computer can be programmed so that it will learn to play a better game of checkers than can be played by the person who wrote the program." - Arthur Samuel (1959)

Machine Learning techniques

Network behaviour analysis

Targets of data analysis

Denial-of-service attacks, network scanning

Unusual behaviour from users

Operational events

Bursts of traffic, special events, point-to-multipoint communications

Outages from the network or cloud operator, hardware failures, bad configurations

Data analysis

1. Aggregation level \Box = host, flow?

What to characterise?

- 2. Features choice
- → Attributes of the element

How to characterise it?

Aggregation levels

Destination **IP** address

Aggregation level

Host behaviour

2. Features

Packet counts, frequency of communications, protocols

Aggregation levels

IP address

Aggregation level

Flow features

2. Features

Flow duration, flow volume, mean packet length, packet inter-arrival time, entropy

Destination **IP** address

Aggregation levels

→ Port or service-level rarely analyzed

2. Features

Destination **IP** address

Contributions outline

Analysis of the usage of services, applications and port numbers

State-of the art: reasons why unused technique

- Our objective: assessing its benefits through lightweight techniques
- Our contributions in 3 different contexts:

Internet-carrier level

Security aspects

BotFingerPrinting

Local (corporate) network

ASTECH

Cellular networks

Behavioural analysis

Per-service detection

Rather **underused** method:

- Numerous elements to analyse
 - In IP networks: <u>65,536 ports</u>
 - In cellular networks: <u>all services or mobile apps</u>
- → Requires an algorithm of low-complexity
- Traffic obfuscation to avoid firewalls
- → Concerns only a few cases
- Encrypted traffic

→ Deep Packet Inspection to induce used applications

Per-service detection

Ports and applications universally and permanently used

Long-term detection as ports subsist over time

→ Detection of attackers slowly spreading

Several vantage points as ports universally used

→ Cross-validation

Application failover or update, vulnerability scan on a given port

→ Not visible by analysing IP addresses and flows

Able to identify uncommon behaviours **not seen with flows and IP adresses**:

Our objectives

State-of-the art: complex approaches, not fit for real networks

- Through the analysis of **ports, services and applications** usages
- Using statistical and machine learning techniques: classification, clustering, anomaly detection

<u>Objective</u>: provide a **pragmatic approach**, lightweight, efficient and scalable

In various contexts: at IP-level, in local networks, in cellular networks

Split-and-Merge

Split-and-Merge

Split-and-Merge At Internet carrier-level

Detection of large-scale attacks: vulnerability scans
Trend of major botnets spreading

Split-and-Merge

<u>Challenge</u>: major botnets spreading not detected by traditional Intrusion Detection Systems

Our approach:

Long-term analysis of ports usage

Cross-validation in several subnetworks

Our contribution: detection of large-scale vulnerability scans and botnets spreading

Server vulnerabilities

Exposed to the Internet, open ports, no authentication

- Common Vulnerabilities and Exposures:
 - CVE-2018-1000115 (memcached) port 11211
 - CVE-2017-17215 (Huawei HG532 routers) port 37215

IoT devices vulnerabilities

- Low computational power to run security functions
 - CVE-2018-7445 (MikroTik devices) port 8291
 - CVE-2018-11653 & CVE-2018-11654 (Netwave IP cameras) port 8000

 \rightarrow Identification of these services or devices by port number.

Vulnerability scan

Port scan to identify devices hosting vulnerable services

IP addresses

Attackers coming from everywhere

Source IP addresses

on port 23

Destination ports

Split-and-Merge Overview

Long-term analysis of the usage of ports:

- 1 Features computation
- 2 Local anomaly detection
- 3 Central correlation
- 4 Fine-grained anomaly characterisation

Split-and-Merge

1 - Features computation

For each port p:

- Source diversity index
- Destination diversity index
- Port diversity index

Split-and-Merge 2 - Local anomaly detection

Time series $x \rightarrow$ normal distribution $\mathcal{N}(\mu, \sigma^2)$ of mean μ and std σ

port p	x_1	x_2	x_3
Feature	7	13	30
Feature	54	50	53

 $\therefore \text{ Z-score of } x_i : Z = \frac{x_i - \mu}{\sigma}$ $\boldsymbol{\sigma}$ \rightarrow not resistant to outliers

Modified Z-score using median and median std

If M > threshold T = 3.5 \rightarrow anomaly

Split-and-Merge 3 - Central correlation

To reduce false positives: Split-and-Merge architecture Central controller: keep only distributed anomalies

			_	
=	Alert	Port	ID	Feature
elation	A1	2323	В	meanSize
	A2	89	В	srcDivIndex
port 23	A3	23	С	portDivIndex
DivIndex	A4	23	D	portDivIndex

Split-and-Merge 4 - Fine-grained characterisation through expert rules

-srcDiv]
+S
+srcDiv]
+srcDiv
- S
-srcDivIndex,

Characteristics
+meanSize, +stdSize
-meanSize, -stdSize
DivIndex, +destDivIndex, -meanSize
+srcDivIndex, -destDivIndex
DivIndex, +destDivIndex, -meanSize
DivIndex, +destDivIndex, -stdSize
-srcDivIndex, -destDivIndex
dex, -destDivIndex, +meanSize, -stdSize

Evaluation on real-world traces

MAWI dataset (WIDE Project):

- **Daily files** of 15 minutes of traffic from a transpacific link
- Captured between the MAWI network and the upstream ISP

22/54

Evaluation (2016)

Anomaly score: number of anomalies for one port

→ Considering all subnetworks and all features

Very low number of anomalies **Not detected** by traditional IDSs (MAWILab, ORUNADA)

MAWILab: combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking, *Co-NEXT*, 2010. Online and Scalable Unsupervised Network Anomaly Detection Method, IEEE Transactions on Networks and Service Management, 2016.

Retrospective of major botnets

- Mirai (ports 23, 2323, 7547, 6789, 2222, 23231)
- Hajime (port 5358)
- Reaper (port 20480)
- Satori (ports 37215, 52869)
- ADB.Miner (port 5555)
- Memcached (port 11211)
- Satori (port 8000)

Split-and-Merge conclusion

Benefits of **per-port detection**:

- traditional IDS

Lightweight algorithm: ideally running at the switch-level

Focus on port numbers: detection of world-wide attacks, not seen by

Long-term analysis: possible only when using **port numbers**

<u>Cross-validation</u> in different subnetworks: very few **false positives**

BotFingerPrinting

BotFingerPrinting At local network-level

BotFingerPrinting At local network-level

Thales

BotFingerPrinting **At local network-level**

Thales

Model the communications within a network Suspicious communications patterns to find infected hosts

BotFingerPrinting

Challenge: botnet detection within LAN

- Flow-based approaches: miss communications patterns
- <u>Graph-based</u> approaches: not scaling

Our approach: simplify the communications graphs through histograms about hosts and services contacted

Our contributions:

- Very high accuracy compared to SOTA
- Lightweight compared to graph-based approaches

Botnet architecture

→ Need to identify communication patterns specific to a bot.

Infected hosts

- **Malicious activities:** DDoS, spam, scan
- **Infection** of other hosts

Graph-based approaches

Graph-based approaches

Graphs modelling the communications of an host

 \diamond Abnormal graphs \Leftrightarrow **botnets**

Our objective: simplifying the communications graphs

→ NP-complete or cubic complexity

CTU-13 dataset (2011)

13 botnet scenarios: training and test (*) sets

ld	#bots	Malware	Activity
1*	1	Neris	IRC, SPAM, CF
2*	1	Neris	IRC, SPAM, CF
3	1	Rbot	IRC, PS
4	1	Rbot	IRC, DDoS
5	1	Virut	SPAM, PS
6*	1	Menti	PS
7	1	Sogou	HTTP
8*	1	Murlo	PS
9*	10	Neris	IRC, SPAM, CF, PS
10	10	Rbot	IRC, DDoS
11	3	Rbot	IRC, DDoS
12	3	NSIS.ay	IRC, P2P
13	1	Virut	HTTP, SPAM, PS

Objective: learn from training set and perform the detection on test set.

C&C channels: IRC, HTTP, P2P

Malicious activities: DDoS, port scan, spam, click fraud

First observations on CTU-13

Inspecting the communications of two different hosts

Benign host

Infected host (bot)

0	10 ⁹ Dest ID	

First observations on CTU-13

Inspecting the communications of two different hosts

Benign host

Infected host (bot)

First observations on CTU-13

Inspecting the communications of two different hosts

Infected host (bot)

Many vulnerable ports contacted

Frequency distribution of protocol uses

Host signature: concatenation of the frequency distributions of the 9 features:

- TCP 9 features from the combination of:
 - UDP
 - ICMP

- Source port
- Destination port
- Destination IP address

Quantisation bin

Adaptive bin width computed for each attribute: the same bin distribution for all hosts

Adaptive bins

Bins width adapted to the density of information

Our general approach: BotFingerPrinting

Evaluation

- Tuning depending on the goal(s) to favour
 - Maximising the true bot detection
 - Minimising the <u>false positive rate</u>
 - Minimising the memory usage

Accuracy of state-of-the-art techniques and BotFP

Evaluation

"An empirical comparison of botnet detection methods," Computers & Security, 2014.

"BotHunter: Detecting Malware Infection Through IDS-Driven Dialog Correlation," Usenix Security Symposium, 2007.

"BotGM: Unsupervised Graph Mining to Detect Botnets in Traffic Flows," CSNet, 2019.

"A Graph-Based Machine Learning Approach for Bot Detection," IFIP/IEEE, 2019.

BotFP conclusion

Benefits of the detection inspecting service usages:

- Histograms approximate the relations between hosts
- Far more lightweight and more efficient than graph-based approaches
 - Very high accuracy (from 97 to 100%), outperforming other state-of-theart techniques
 - Nearly all bots detected with very few false positives

ASTECH

ASTECH In cellular networks

ASTECH In cellular networks

Detecting uncommon behaviours from users
Special events and outages from the operator
Impacted mobile applications during the event

ASTECH

Challenge:

- Detection of events in mobile traffic not tackled at the **app-level**
- Classification of events rarely done

Our approach:

Spatiotemporal convex hull anomaly detection

Analysis of impacted mobile apps and spatiotemporal spreading

Our contribution: detection and classification of events in mobile traffic

Evaluation on citywide traffic data

TCP sessions aggregated by time series per:

- **Mobile application**
- Attribute: #users, upload and download traffic
- ✤ 30-minute time slot
- **Base station**

ASTECH

Step 1: set of time series \mathcal{Y}

For each time series (i.e. each app, feature and base station):

Step 2.1: set of raw anomalies \mathcal{A}

Given the whole set of raw anomalies:

Step 3: set of group anomalies Γ

Given the whole set of group anomalies:

Event classification

- 3 super-features to classify group anomalies:
- Sign of traffic variations
- i.e., less or more traffic than usual
- Anomaly sparsity
- Centralized or distributed anomaly?
- Group of impacted apps -
- Rather a single or several impacted apps?
- \succ k-means clustering of anomalies Γ based on their super-features

Formation of <u>spatiotemporal groups</u>

Spatial grouping: abnormal snapshots into spatial groups

2. Spatiotemporal grouping: spatial groups into spatiotemporal group anomalies

Messaging and streaming apps mostly impacted

Navigation and transit apps mostly impacted

Special events characterisation

Clustering to group similar events into broad categories

- 3 super-features
- 8 broad categories of events

Evaluation on citywide dataset

Events of positive anomalies

- Matches/concerts at Stade de France
- Notre-Dame de Paris fire
- Application update

Events of negative anomalies

- Bank holidays
- Orange 4G network outage
- Google Cloud outage

- Specific typology for the events of positive anomalies

Typology of impacted apps

Events of <u>negative</u> anomalies

Bank holiday

→ All apps impacted

→ No specific typology for negative anomalies, as all apps (lightly) impacted

Other443

Outage 0.006 0.004 0.002 0.000 Store Spotify Spotify1 Cloud command Google API Google Web Youtube TLS Web Advertising What's App e-Commerce Web Audience Default http 80 Apple Web Google NAV Google+CDN iCloud Storage YouTube WEB DownloadWeb Other443 **Twitter Videos** ho_e Play

→ All apps impacted

Temporal evolution of the set of impacted apps

Bank holiday

- Similar profile (darkest squares) during commuting times
- Similar profile during working hours

Evaluation

Outage

Similar profile at the heart of the match

Spatial evolution of the set of impacted apps

One generic pattern: bank holidays and local/national events

Very close Voronoi cells while others more distant

group of dissimilar zones

SAINT DENIS BASILIQUE ST DENIS PONT DU LANDY CORNILLON STADE BIS ST DENIS PTE DE PARIS L13 ST_DENIS_CANAL LES SIX ROUTES AUBERVILLIERS FOURRIER STADE TRIB I ILLE SAINT DENIS VERDUN LAGARENNE STADE_TRIB_A STADE TRIB B STADE TRIB E CORNILLON STADE CITE DU FRANC MOISIN SURDENS A86 CANAL STADE TRIB F SAINT DENIS URSULINE STADE TRIB C SAINT DENIS AMPERE

ASTECH conclusion

Benefits of studying the mobile apps usage:

- Spatiotemporal group anomaly detection
 - Fine characterisation of a wide variety of events
- Typology of impacted applications
 - Events of **positive** anomalies \rightarrow **typology** of impacted applications (either subset of apps or unique app)
 - Events of <u>negative</u> anomalies \rightarrow <u>no specific</u> typology

General conclusion

Contributions

Split-and-Merge

- IEEE Symposium on Integrated Network and Service Management (IM), 2019.
- based approach," in *Elsevier Computer Networks*, vol. 180, pp. 107391, 2020.
- 2020.

A. Blaise, M. Bouet, S. Secci, V. Conan, "Split-and-Merge: Detecting Unknown Botnets," IFIP/

A. Blaise, M. Bouet, V. Conan, S. Secci, "Detection of zero-day attacks: An unsupervised port-

A. Blaise, S. Scott-Hayward, S. Secci, "Scalable and Collaborative Intrusion Detection and Prevention Systems Based on SDN and NFV," chapter in *Guide to Disaster-Resilient* Communication Networks, Computer Communications and Networks, pp. 653-673, Springer,

Contributions

BotFingerPrinting

- Detecting **botnet infected hosts** at the enterprise-level
- Histogram-based algorithm to model communications
- A. Blaise, M. Bouet, V. Conan, S. Secci, "Botnet Fingerprinting: A Frequency Distributions" Scheme for Lightweight Bot Detection," in IEEE Transactions on Network and Service Management, vol. 17 (3), pp. 1701-1714, 2020.
- A. Blaise, M. Bouet, V. Conan, S. Secci, "BotFP: FingerPrints Clustering for Bot Detection," IEEE/IFIP Network Operations and Management Symposium (NOMS), 2020.

Contributions

ASTECH

- and impacted apps
- Computing.

Detection of spatiotemporal events occurring in a city, in terms of volume

A. Blaise, M. Bouet, V. Conan, S. Secci, "Group anomaly detection in mobile app usages: a spatiotemporal convex hull methodology," submitted to IEEE Transactions on Mobile

General perspectives

- Demonstration of the potential of the analysis of port numbers, mobile applications and services
 - Act as universal (in all subnetworks) and permanent identifiers
 - Efficient and lightweight algorithms
- Real time implementation: online algorithms
- System applicability
- Development of <u>hybrid</u> solutions: coupling the analysis on flows and IP addresses with port numbers

Perspectives

- **Split-and-Merge**
 - Implementation in a **Software-Defined Networking** environment
 - P4 network programming language: detection, attack mitigation

BotFingerPrinting

- Exploring unsupervised learning techniques

ASTECH

- Grouping anomalies disconnected from each other
- Real time implementation in <u>5G Platform</u>

Real time implementation in a <u>Security and Information Event Management</u>

