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Data analysis

Data: logs of communications, list of transactions, actions of the users, etc.

Potentially thousands of logs to handle each day

At first sight: indecipherable
and no obvious patterns

Knowledge discovery:
“* Find underlying patterns

“* Define generic model for learning




Data analysis techniques
Event 1

Numerous anomalies

®
\ % Correlate them to find events

.’ “* Investigate root causes, identity
of attackers, modus operand....

Event 2

State-of-the-art: rather complex, fine-grained approaches
e.g., neural networks, graph-based technigques

& Very expensive computationally and not fit for real networks



Data analysis techniques

% Statistical techniques “* Machine Learning techniques

"A computer can be programmed so that it will learn to play a better
game of checkers than can be played by the person who wrote the

program.” - Arthur Samuel (1959)

Problem Data Features Model Model
formulation collection design application evaluation



Network behaviour analysis

QoS/QoE
Traffic Congestion management
era control
classification
f jllllllllll%.... HE B EEBE
Internet |
Traffic routing Firewall I Local network

Network Users
security behaviour



Targets of data analysis

* Malicious behaviour from users

> Denial-of-service attacks, network scanning

* Unusual behaviour from users

> Bursts of traffic, special events, point-to-multipoint communications

% Operational events

> Outages from the network or cloud operator, hardware failures, bad configurations



Data analysis

[ ] = instance of traffic

L] []

Ll M 1 L
Anomaly u 3 “normal” classes as

\ ] [ | statistically viable
D 4/
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1. Aggregation level 2. Features choice
[ ] = host, flow? — Attributes of the element

What to characterise? How to characterise it?



Aggregation levels

1. Aggregation level

COmpared to all HOS‘t B HOSt behaViOur

other hosts
Destination port:

F service 7= 2. Features
I es\O% :
F <P & 3 Packet counts, frequency of
& 3 communications, protocols
I Ephemeral 1
— source port —

Source Destination

IP address IP address




Aggregation levels

1. Aggregation level

Host A Host B Flow features
I Destination port: =
I service 1 2. Features
= 55'\0“ 1 :
F P & 3 Flow duration, flow volume,
I Compared to all 1 mean packet length, packet
I other flows 3 Inter-arrival time, entropy
— Ephemeral 3
— source port —
Source Destination

IP address IP address




Aggregation levels

1. Aggregation level

Host A Host B
I Destination port] =
E service | = 2. Features
E \OO E
= 5655\ N
= '(G? 1
§ Ephemeral 1
— source port —

Source Destination
|IP address IP address

— Port or service-level rarely analyzed




Contributions outline

Analysis of the usage of services, applications and port numbers

“ State-of the art: reasons why unused technique

“* Our objective: assessing its benefits through lightweight techniques

2 Qur contributions in 3 different contexts:

Split-and-Merge BotFingerPrinting ASTECH
=R (@)
7’ . 88 ] )
Internet-carrier level Local (corporate) network Cellular networks

m
Security aspects Behavioural analysis



Per-service detection

Rather underused method:;

“* Numerous elements to analyse
> In IP networks: 65,536 ports

> In cellular networks: all services or mobile apps

— Requires an algorithnm of low-complexity

» Traffic obfuscation to avoid firewalls

— Concerns only a few cases

“* Encrypted traffic

— Deep Packet Inspection to induce used applications




Per-service detection

Ports and applications universally and permanently used

Able to identify uncommon behaviours not seen with flows and IP adresses:

“* Long-term detection as ports subsist over time

— Detection of attackers slowly spreading

“» Several vantage points as ports universally used

— Cross-validation

“* Application failover or update, vulnerability scan on a given port

— Not visible by analysing IP addresses and flows 11/54




Our objectives

“ State-of-the art: complex approaches, not fit for real networks

Objective: provide a pragmatic approach, lightweight, efficient and scalable

“» Through the analysis of ports, services and applications usages

“* Using statistical and machine learning techniques: classification,
clustering, anomaly detection

** |In various contexts: at IP-level, in local networks, in cellular networks




Split-and-Merge




Split-and-Merge




Split-and-Merge

At Internet carrier-level

Detection of large-scale attacks: vulnerability scans

Trend of major botnets spreading



Split-and-Merge

Challenge: major botnets spreading not detected
by traditional Intrusion Detection Systems

Our approach:

“ |Long-term analysis of ports usage

** Cross-validation in several subnetworks

Our contribution: detection of large-scale
vulnerability scans and botnets spreading




Server vulnerabilities

Exposed to the Internet, open ports, no authentication

Common Vulnerabilities and Exposures:

“ CVE-2018-1000115 (memcached) port 11211
“ CVE-2017-17215 (Huawei HG532 routers) port 37215

loT devices vulnerabilities

Low computational power to run security functions

“ CVE-2018-7445 (MikroTik devices) port 8291
“ CVE-2018-11653 & CVE-2018-11654 (Netwave |IP cameras) port 8000

— |dentification of these services or devices by port number.

Context

tﬁe 5@ E\




Context

=i

Vulnerability scan

Port scan to identify devices hosting vulnerable services

» |P addresses

A1 Each targeting the

from everywhere 7/, ’\\‘g‘ whole range of IP

—— == — addresses
— ——
Source IP addresses Destination |IP addresses
* Port numbers Port spoofing

Port scan
on port 23

A

Range for
ephemeral ports

Port scan
on port 2323

Source ports Destination ports




Approach

Split-and-Merge =R

Overview

“* Long-term analysis of the usage of ports:
1 - Features computation
2 - Local anomaly detection
3 - Central correlation

4 - Fine-grained anomaly characterisation



Approach

Split-and-Merge =R

1 - Features computation

For each port p:

“* Source diversity index “* Mean packet size
“* Destination diversity index < Standard deviation of packet size
“ Port diversity index “* Percentage of SYN packets

Port p -.*l.. l'lLll. " . lr-.l

Port g N l* O 'Tl' m L pinEy W = H * 'Fl*l

15 minutes 15 minutes 15 minutes




Approach

Split-and-Merge =R

2 - Local anomaly detection

Time series x = normal distribution ./ (1, 6°) of mean i and std ¢

port p X X X3
Feature [ 13
Feature 54 50 53

2% Z-scoreof x;: /Z =

u— 30 u— 20 pu—oc u u+ o pu+ 20 upu+ 30 o
O 7 10 13 Normalization

u=0ando =1
Z-score — 3 -2 -1 0 1 2 3 v

— not resistant to outliers

“* Modified Z-score using median and median std

f M > threshold T = 3.5 — anomaly 19/54




Split-and-Merge

3 - Central correlation

To reduce false positives: Split-and-Merge architecture

Central controller: | keep only distributed anomalies

1. Data collection

1. Data collection

2. Feature computation Module Module

3. Anomaly detection

1. Data collaefction

2. Feature computation

3. Anomaly detection

4. Central correlation
|

v
Anomaly on port 23

feature portDivindex

{

2. Feature computation

3. Anomaly detection

1. Data collection

2. Feature computation

Alert Port
Al 2323
A2 89
A3 23
A4 23

3. Anomaly detection

ID Feature

B

B
C
D

meanSize
srcDivindex
portDivindex

portDivindex

Approach

/’E 5@ E\




Approach

Split-and-Merge =R

4 - Fine-grained characterisation through expert rules

Classes Characteristics
More normal packets +meanSize, +stdSize
More forged packets -meanSize, -stdSize
Large scan -srcDivIndex, +destDivIndex, -meanSize
DDoS +srcDivIndex, -destDivIndex
Botnet scan +srcDivIndex, +destDivIndex, -meanSize
Bothet expansion +srcDivIndex, +destDivIndex, -stdSize
Targeted scan -srcDivIndex, -destDivIndex
Less botnet scan -srcDivIndex, -destDivIndex, +meanSize, -stdSize




Dataset

Evaluation on real-world traces =R

MAWI dataset (WIDE Project):

“ Daily files of 15 minutes of traffic from a
transpacific link

“» Captured between the MAWI network
and the upstream ISP




Anomaly score

Evaluation

=&

Evaluation (2016)

Anomaly score: number of anomalies for one port

— Considering all subnetworks and all features
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“ Very low number of anomalies
“* Not detected by traditional IDSs (MAWILab, ORUNADA)
MAWILab: combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking, Co-NEXT, 2010. m

Online and Scalable Unsupervised Network Anomaly Detection Method, IEEE Transactions on Networks and Service Management, 2016.



Evaluation
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Retrospective of major botnets

Mirai (ports 23, 2323, 7547, 6789, 2222, 23231)
Hajime (port 5358)

Reaper (port 20480)

Satori (ports 37215, 52869)

ADB.Miner (port 5555)

Memcached (port 11211)

D e e e o

Satori (port 8000)



Conclusion

Split-and-Merge conclusion =R

Benefits of per-port detection:

“* Focus on port numbers: detection of world-wide attacks, not seen by
traditional IDS

“* Long-term analysis: possible only when using port numbers

“» Cross-validation in different subnetworks: very few false positives

Lightweight algorithm: ideally running at the switch-level




BotFingerPrinting




BotFingerPrintir

At local network-le







BotFingerPrinting

At local network-level

Intrusion AttaC ker
Detection i—%%
F. ” System =
lrewa
! ' . Internet

Corporate LAN

Model the communications within a network
Suspicious communications patterns to find infected hosts



BotFingerPrinting

Challenge: botnet detection within LAN

4>
“ Flow-based approaches: miss
communications patterns -
< Graph-based approaches: not scaling m

T

Intrusion
Detection
System

i_,_

Corporate LAN
Our approach: simplify the communications

graphs through histograms about hosts and

services contacted

Our contributions:

“* Very high accuracy compared to SOTA
“ Lightweight compared to graph-based approaches

KThales

[

Internet



Context

Botnet architecture &%ﬁ

Attacker Malware :l Infected hosts

DDoS, spam, scan

p E - Infection of other hosts

Command-and-Control (C&C) channel

E - Malicious activities:

— Need to identify communication patterns specific to a bot.




Context

Graph-based approaches &%ﬁ

Internet

Corporate LAN




Graph-based approaches @%

>
NN

4
Attacker

"r-r.

Corporate LAN

Context

Infection of other hosts and attacks

Internet

“* Graphs modelling the communications of an host

“* Abnormal graphs < botnets

— NP-complete or cubic complexity

— QOur objective: simplifying the communications graphs




CTU-13 dataset (2011)

13 botnet scenarios: training and test (*) sets

Id #bots Malware Activity

1~ ] Neris IRC, SPAM, CF

2" I Neris IRC, SPAM, CF
Rbot IRC, PS
Rbot IRC, DDoS
Virut SPAM, PS

6* I Menti PS

14 I Sogou HTTP

8* I Murlo PS

o* 10 Neris IRC, SPAM, CF, PS

10 10 Rbot IRC, DDoS
Rbot IRC, DDoS

12 3 NSIS.ay IRC, P2P

13 1 Virut HTTP, SPAM, PS

Dataset

o

»» C&C channels:
IRC, HTTP, P2P

< Malicious activities:

DDoS, port scan,
spam, click fraud

— Objective: learn from training set and perform the detection on test set. 30/54.




Approach

First observations on CTU-13 S

Inspecting the communications of two different hosts

Infected host (bot)

Range for ephemeral ports
recommended by IANA

4.
——> 4 -1Uncommon range

109 & ®r @8 0% 109
e S oaw

Dest IP
Dest IP

0 Source port 65,536 0 Source port 65,536



Approach

First observations on CTU-13 S

Inspecting the communications of two different hosts

Infected host (bot)

49 4.
10 .‘u-‘o...oo‘oo 1()9
e o e
DNS
Only . _|,server’s

o | several N N/ IP

= IPs address A Whole range of IP
R |contacted I addresses targeted

a
0
o 0 )|

0 Source port 65,536 0 Source port 65,536



First observations on CTU-13

Inspecting the communications of two different hosts

Infected host (bot)

O
™ (o
LO ™
o] 0
© S
S S Many vulnerable
0 + ports contacted
O o)
s a
Only some
reserved ports
contacted ‘
0 t_-i_ 0
0 Source port 65,536 0 Source port 65,536

Approach

e




Approach

Frequency distribution of protocol uses |~ 7

Host signature: concatenation of the frequency distributions of the 9 features:

9 features from the combination of: = TCP - Source port
- UDP - Destination port
- ICMP - Destination IP address
_ JANA range for ephemeral ports |IP addresses contacted
Example for a benign host: — — >
4 % 10°
P\
ol 0 TCP source port 69936 O TCPdestIP  4x10°
+ ﬁ
)
0

IANA range for ephemeral ports DNS server’s [P

—)
address

{ B CP
B UDP
B (CMP

0 Source port 65,536 0 UDP source port 65536 U UDP dest IP 4 x 10°



Approach

Quantisation bin R

Adaptive bin width computed for each attribute: the same bin distribution for all hosts

Example for a Destination port TCP:

Regular bins Adaptive bins
Bins of equal width Bins width adapted to the density of information

0 0
< > 65,536 < > 65,536

More granularity More bins
of information




Approach

Our general approach: BotFingerPrinting |-

StartTime, Dur, Sip, Sport, Dip, ToS, TotPkts, TotBytes, Label

Flow records
collection

Host network Sip
filtering and grouping

Quantification
(frequency distributions
computation)

Offline training
(clustering)

Online classification
(distances computation)

©9:46:59,1.026539,tcp,94.44.127.113,1577,77.75.73.33,6881,53,182,71
09:47:00, 1.009595,tcp, 147.32.86.89,4768,77.75.73.33,80,53,182, 71
09:47:48,3.056586,udp,213.200.244.217,4788,147.32.84.59,13363,53,182,71
©9:51:34, 3.111769,icmp,147.32.86.92,80,147.32.84.59,13363,53,182,71

Sip Proto,Dip,Sport,Dport
147.32.84.117|tcp,94.24.17.1,5252,23
|tcp,41.42.17.1,4353,23
tcp,31.4.18.1,1026,80

147.32.86.59 [tcp,94.44.17.1,5252,23

rudp,94.44.1.1,5352,23

Proto,Dip,Sport,Dport

udp,94.44.17.1,5352,23
udp,94.44.17.1,4353,23 |
udp,108.1.1.1,4353,23

Proto,Dip,Sport,Dport

icmp,10.0.0.0,552,23
icmp,94.44.17.1,423,23
icmp,94.44.17.1,16, 80

icmp,94.44.17.1,552,23

147.32.84.117,

Proto,Dip, Sport,Dport
(tcp,94.24.17.1,5252,23
| tcp,41.42.17.1,4353,23

>

probability
distribution

bin step size = 4096

[

Sportrcp =10, 0, O,

200, 150, 150,0,0,0

m —> 100, 110, 140, 160,

tcp,31.4.18.1,1026,80 N
P 0 1024 65536 20, 0, 0]

Osip = Sportrep |l D’PTO;%TCP I Diprep | Sportype Il Dportype || Diportyppe Il Sporticup I| Dporticyp I D&FMP
b bins b bins b bins
benign O @ @ bot

benign P
bot enign
benign \é)
./>®/ BOT  benign

BOT bot




Evaluation

“* Tuning depending on the goal(s) to favour

0.75

Accuracy
)
@)

0.25

> Maximising the true bot detection

> Minimising the false positive rate

> Minimising the memory usage

Accuracy of state-of-the-art techniques and BotFP

+—>

6

Scenario ID

— BotFP accuracy between 97 and 100%

Evaluation

"An empirical comparison of botnet detection methods,”
Computers & Security, 2014.

"BotHunter: Detecting Malware Infection Through IDS-Driven
Dialog Correlation," Usenix Security Symposium, 2007.

"BotGM: Unsupervised Graph Mining to Detect Botnets in Traffic
Flows," CSNet, 2019.

"A Graph-Based Machine Learning Approach for Bot Detection,"
IFIP/IEEE, 2019.

BClus " CAMNEP

B BotHunter WM Grap
B BotGM " BotF
B BotFP-MLP [ BotF

n-based ML
P-Clus

P-SVM



Conclusion

e

BotFP conclusion

Benefits of the detection inspecting service usages:

“ Histograms approximate the relations between hosts

“* Far more lightweight and more efficient than graph-based approaches

> Very high accuracy (from 97 to 100%), outperforming other state-of-the-
art techniques

> Nearly all bots detected with very few false positives






ASTECH

In cellular networks




ASTECH

In cellular networks

~Q

Detecting uncommon behaviours from users
Special events and outages from the operator
Impacted mobile applications during the event



ASTECH

Challenge:

*» Detection of events in mobile traffic not
tackled at the app-level

“» Classification of events rarely done

Our approach:

“ Spatiotemporal convex hull anomaly
detection

% |Analysis of impacted mobile apps

and spatiotemporal spreading

Our contribution: detection and classification
of events in mobile traffic




Dataset

Evaluation on citywide traffic data )

e position of the antenna () Voronoi cell

TCP sessions aggregated by time series per: S B N\ v |
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Approach

ASTECH iy

Step 1: set of time series Y Step 2.1: set of raw anomalies A Step 3: set of group
For each time series (i.e. each app, feature and base station): Given the whole set of raw anomalies: anomalies I’
Time series decomposition Snapshots formation Given the whole set of group anomalies:

A A R Snapshot < group of anomalies at a given place and time Event classification

n L Gives an idea about the current network’s state J
» 3 super-features to classify group
| anomalies:

2 % > > Step 2.2: set of snapshots S - Sign of traffic variations
original [e— residual S ; i.e., less or more traffic than usual
. : ; : election of abnormal shapshots ’
\ I signal + signal + signal A P - Anomaly sparsity
o A | Centralized or distributed anomaly?
# of pos. . Pos. abnormal snapshots - Group of impacted apps

extraction
Time series anomaly detectlonﬁ anomalies, ., =0Q1,,+1.5IQR,, Rather a single or several impacted apps?

> Smoothed Z-score: | | =
—m;ifg i ; :?;: (¢ = 3.5) with avg and # of neg. - | W -z = Q1_, +1.5IQR_, > k-means clustering of anomalies I
+— L T .

based on their super-features

std the mean and standard deviation on period priomaiics ———<——Neg. abnormal snapshots

[tO'Iag;tol . e e —r
> Anomaly if value(ty) > t, or < t. 2-step clustering
Cluster 2:

» Recursive algorithm by region growing :
. . national events
» + Aggregation into spatio-temporal events
Cluster 1: O

Common zones
local events O Cluster 4:
unknown

. L

\ Cluster 3:

\ app update




Approach

Formation of spatiotemporal groups )

1. Spatial grouping: abnormal snapshots into spatial groups

2. Spatiotemporal grouping: spatial groups into spatiotemporal group anomalies

Beginning of the match End of the match
25t March — 19:00 | 25t March — 21:00 | 25" March-23:00
@ More and more impacted @ Towards the end of the match: spread @
zones during the match out groups as supporters go back home
2438000 1 TER — ; e 2438000 {7 D a TR 7 5438000 =
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Approach

Special events characterisation T

Clustering to group similar events into broad categories

“* 3 super-features

“*» 8 broad categories of events

centralized
1/ SPARSITY
distributed

group of

Categories of events:

@ national event

operator outage
@ or bank holiday

@ app update
@ app failover

2/ PROFILE | 9PP>
OF APPS

unique
app

pm

3/ TRAFFIC VARIATION

negative



Evaluation

Evaluation on citywide dataset Ty

“* Events of positive anomalies

» Matches/concerts at Stade de France
> Notre-Dame de Paris fire

> Application update

“* Events of negative anomalies

> Bank holidays
> Orange 4G network outage

> Google Cloud outage




Evaluation
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Typology of impacted apps

Events of nhegative anomalies
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Evaluation

Temporal evolution of the set of impacted apps |
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Evaluation

Spatial evolution of the set of impacted apps [y

One generic pattern: bank holidays and local/national events

> Very close Voronoi cells while others more distant

group of dissimilar zones
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Conclusion

ASTECH conclusion )

Benefits of studying the mobile apps usage:

“ Spatiotemporal group anomaly detection

> Fine characterisation of a wide variety of events

“ Typology of impacted applications

> Events of positive anomalies — typology of impacted applications (either
subset of apps or unique app)

> Events of negative anomalies — no specific typology




General conclusion




Contributions

Split-and-IVlerge

“* Early detection of emerging botnets spreading on the Internet

~ A. Blaise, M. Bouet, S. Secci, V. Conan, "Split-and-Merge: Detecting Unknown Botnets,” IFIP/
IEEE Symposium on Integrated Network and Service Management (IM), 2019.

> A. Blaise, M. Bouet, V. Conan, S. Secci, "Detection of zero-day attacks: An unsupervised port-
based approach,” in Elsevier Computer Networks, vol. 180, pp. 107391, 2020.

> A. Blaise, S. Scott-Hayward, S. Secci, "Scalable and Collaborative Intrusion Detection and
Prevention Systems Based on SDN and NFV," chapter in Guide to Disaster-Resilient

Communication Networks, Computer Communications and Networks, pp. 653-673, Springer,
2020.



Contributions

BotFingerPrinting

“* Detecting botnet infected hosts at the enterprise-level

“* Histogram-based algorithm to model communications

> A. Blaise, M. Bouet, V. Conan, S. Secci, "Botnet Fingerprinting: A Frequency Distributions
Scheme for Lightweight Bot Detection," in IEEE Transactions on Network and Service
Management, vol. 17 (3), pp. 1701-1714, 2020.

> A. Blaise, M. Bouet, V. Conan, S. Secci, "BotFP: FingerPrints Clustering for Bot Detection,”
|IEEE/IFIP Network Operations and Management Symposium (NOMS), 2020.



Contributions

ASTECH

“» Detection of spatiotemporal events occurring in a city, in terms of volume
and Impacted apps

> A. Blaise, M. Bouet, V. Conan, S. Secci, "Group anomaly detection in mobile app usages: a
spatiotemporal convex hull methodology,” submitted to IEEE Transactions on Mobile
Computing.



General perspectives

“» Demonstration of the potential of the analysis of port numbers, mobile
applications and services

> Act as universal (in all subnetworks) and permanent identifiers

> Efficient and lightweight algorithms

“* Real time implementation: online algorithms

“ System applicability

* Development of hybrid solutions: coupling the analysis on flows and IP
addresses with port numbers




Perspectives

“ Split-and-Merge

> Implementation in a Software-Defined Networking environment

~ P4 network programming language: detection, attack mitigation

“» BotFingerPrinting

> Exploring unsupervised learning techniques

» Real time implementation in a Security and Information Event Management

“ ASTECH
> Grouping anomalies disconnected from each other

> Real time implementation in 5G Platform
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